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Abstract 

A technique for predicting polymer quality in batch polymerisation reactors using robust neural networks is proposed in this paper. Robust 
neural networks are used to learn the relationship between batch recipes and the trajectories of polymer quality variables in batchpolymerisation 
reactors. The robust neural networks are obtained by stacking multiple nonperfect neural networks which are developed based on the bootstrap 
re-samples of the original training data. Neural network generalisation capability can be improved by combining several neural networks and 
neural network prediction confidence bounds can also be calculated based on the bootstrap technique. A main factor affecting prediction 
accuracy is reactive impurities which commonly exist in industrial polymerisation reactors. The amount of reactive impurities is estimated 
on-line during the initial stage of polymerisation using another neural network. From the estimated amount of reactive impurities, the effective 
batch initial condition can be worked out. Accul-ate predictions of polymer quality variables can then be obtained from the effective batch 
initial conditions. The technique can be used to design optimal batch recipes and to monitor polymerisation processes. The proposed techniques 
are applied to the simulation studies of a batch methylmethacrylate polymerisation reactor. 0 1998 Elsevier Science S.A. All rights reserved. 
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1. Introduction 

Batch reactors are suitable for manufacturing high value 
added specialty chemicals such as specialty polymers, phar- 
maceuticals, and biochemicals. Optimal control of batch 
polymerisation reactors have been stuclied by several 
researchers (e.g., Refs. [ I-S] ). The main objective of these 
optimal control strategies is to obtain a product with desired 
physical and mechanical properties within a minimum time. 
Optimal profiles of reactor temperature and/or initiator add- 
ing policies are calculated based on first principles models of 
polymerisation processes. 

The development of detailed first principles models for 
complex polymerisation processes is usual .y very time con- 
suming and effort demanding. It is quite common for a com- 
prehensive mechanistic polymerisation model to involve 
dozens of differential and algebraic equations. Empirical 
models based on neural networks can be used to ease the 
effort in model development. Neural networks have been 
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shown to be able to approximate any continuous nonlinear 
functions (e.g. Refs. [9-l 1 ] ) and have been applied to proc- 
ess modelling and control (e.g., Refs. [ 12-151). 

A key issue in neural network based modelling is the net- 
work generalisation capability. The neural network model 
should perform reliably when applied to unseen data. Neural 
network generalisation capability is mainly determined by 
the network training method and training data. To build an 
accurate neural network model, ideally the training data 
should be abundant and cover a wide range of the system 
input space. In many practical situations, the amount of train- 
ing data is often limited due to the cost in conducting exper- 
iments and the difficulties in measuring some physical 
variables such as polymer quality variables. In batch poly- 
merisation production, polymer quality variables including 
the number average molecular weight and the weight average 
molecular weight are usually measured through laboratory 
analysis and, typically, only a very limited samples of these 
measurements are made during a batch. When the amount of 
training data is limited, a neural network model often tends 
to over-fit the training data and result in significant errors 
when applied to unseen data. To overcome the difficulty due 
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to limited process data, Tsen et al. [ 161 propose to augment 
experimental data by using an approximate mechanistic 
model of the process. They used the first order Taylor series 
expansion of the approximate mechanistic model to extrap- 
olate around the experimental data, Augmented data are gen- 
erated in this way. They applied this technique to polymer 
quality control in a batch polymerisat:on reactor. The limi- 
tations of this approach are the need for an appropriate mech- 
anistic model and the potential problem of the assumed linear 
behaviour around the operating point. 

Some neural network training techniques have been devel- 
oped to improve network generalisation capability. One of 
the techniques is training with regularisation [ IO, 171. The 
aim of regularisation is to prevent unnecessarily large neural 
network weights which can result in 1 arge prediction errors 
on unseen data. The idea of regularisation has been widely 
used in statistical model building and a variety of techniques, 
such as ridge regression, principal component regression, and 
partial least squares regression, have been developed. Neural 
network generalisation capability can also be improved by 
using a parsimonious network structure. Network pruning 
techniques have been developed to rerr ove unnecessary neu- 
rons [ 18 1. A sequential orthogonal training technique for 
building parsimonious network using mixed types of hidden 
neurons was proposed by Zhang et a:. [ 191. An attractive 
approach to improve neural network node1 robustness is to 
develop a set of neural network models and combine them. 
The combined neural network model is known as a stacked 
neural network model [ 20-221. In a st.acked neural network, 
the final model prediction is a combination of the predictions 
from the individual neural networks. 

In this paper, we propose a robust neural network based 
technique for predicting trajectories of polymer quality var- 
iables in batch polymerisation reactors from batch recipes. 
Stacked neural networks are used to learn the relationship 
between batch recipes and the trajectories of polymerisation 
quality variables. A practically very important aspect in poly- 
merisation is the problem of reactive impurities. The eco- 
nomic operation of polymer reactor; requires to recover 
unreacted monomers and solvent. The recovered monomer 
and solvent are recycled back to polymerisation reactors. This 
will inevitably introduce reactive impu :ities which are mainly 
in the form of oxygen and traces of inhibitors. Reactive impu- 
rities can rapidly consume free radic,ils and cease or slow 
down the polymerisation process. When there exist reactive 
impurities, the effective batch initial condition will be differ- 
ent from that defined by the batch recipe. Predictions of pol- 
ymer quality variables based on the nominal batch initial 
condition will therefore possess signi Ficant errors. A neural 
network based technique for estimating reactive impurities 
has been developed by Zhang et al. [ 231. The technique can 
accurately estimate the amount of reactive impurities during 
the initial stage of a batch. Once the amount of reactive 
impurities has been estimated, the effective batch initial con- 
ditions can be worked out. Accurate predictions of trajectories 
of polymer quality variables can then be obtained based on 

the effective batch initial conditions. A batch polymerisation 
reactor can be monitored and controlled based upon the pre- 
dicted trajectories of polymer quality variables. If the pre- 
dicted final polymer quality differs from the desired value 
then appropriate control actions, such as varying reactor tem- 
perature or varying batch ending time, should be taken to 
prevent any off-specification products being produced. The 
neural network model for predicting polymer quality can also 
be used to design optimal batch recipes. 

The paper is organised as follows. Section 2 discusses 
neural network based process modelling. Problems in con- 
ventional neural network modelling are discussed and stacked 
neural networks are presented. Section 3 describes the pre- 
diction of polymer quality using neural networks. Distur- 
bance estimation is presented in Section 4. Application of 
the proposed technique to a simulated batch polymerisation 
reactor is presented in Section 5. Section 6 discusses opti- 
mal batch recipe design based on neural network models. 
Section 7 concludes this paper. 

2. Neural network based process modelling 

2. I. MultiluJer feed forward neural networks 

Neural networks have been shown to be able to approxi- 
mate any continuous nonlinear functions (e.g., Refs. [9- 
1 1 ] ) and have been applied to nonlinear process modelling 
and control recently (e.g., Refs. [ 12-151) . The most com- 
monly used neural network architecture is the multilayer feed 
forward neural network shown in Fig. 1. The basic feed for- 
ward network performs a nonlinear transformation of the 
input data in order to approximate the output data. 

Inputs to a neural network are presented at the input layer. 
The data from the input neurons is then propagated through 
the network via the interconnections such that every neuron 
in a layer is connected to every neuron in the adjacent layers. 
It is the hidden layer structures which essentially define the 
topology of a feed forward network. Each interconnection 
has associated with it a scalar weight which acts to modify 
the strength of the signal passing through it. The neurons 
within the hidden layer perform two tasks: they sum the 
weighted inputs to the neuron and then pass the resulting 
summation through a nonlinear activation function. In addi- 
tion to the weighted inputs to the neuron, a bias is included 
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Fig. 1. A multilayer feed forward neural network. 
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in order to shift the space of the nonlinearity. The output of 
a hidden neuron can be represented as follows: 

(1) 

O= 
1 

1 +exp( -5”) 
(2) 

where b is a bias. i, is the ith input to the hidden neuron, wi 
is the weight associated with I,, and 0 is the hidden neuron 
output. Eq. (2) is known as the sigmoidal neuron activation 
function and its output is in the range (0, 1). Output layer 
neurons can also use the sigmoidal activation function. How- 
ever. for process modelling applications, output layers neu- 
rons usually use the linear activation function since it can 
give a wide range of outputs. 

Network weights are such trained so tha: the sum of 
squared network prediction errors is minimised. The training 
objective function can be defined as follows: 

where N is the number of training data points. y is the network 
prediction,): in the target value, and t is an index of the training 
data. The most commonly used network training method is 
the back propagation training method [ 241, where network 
weights are adjusted as follows. 

hW(k+ 1) =ck!hW(k) -Tg&-) 

w(~+l)=~(~)+Aw(~~l) (5) 

In Eqs. (4) and (5), W(k) and h W(k) are the weight and 
weight adaptation at the training step k, respectively, cy is the 
momentum coefficient, and n is the learning rate. Training 
can be terminated when the error gradient is l’ess than a pre- 
specified value, e.g., 10w6. Training can also be terminated 
by a cross validation based stopping criterion. When using a 
cross validation based stopping criterion, data for building a 
neural network model is divided into a training data set and 
a testing data set. During network training. the network pre- 
diction error on the testing data is continuousiy monitored. 
Training is terminated when the testing error stops 
decreasing. 

Although in theory a neural network can a~lproximate any 
continuous nonlinear functions, a perfect r,eural network 
model is usually very difficult, if not impossible, to build in 
practice, especially when the amount of trainlng data is lim- 
ited. This is due to several factors. First, network training is 
a nonlinear optimisation problem which is :solved through 
numerical search methods. There is no guarantee that the 
global minimum will be reached and network training may 
converge to a local minimum. Secondly, data collected from 
an industrial process will inevitably contain measurement 
noise. Over-fitting of noise can seriously deteriorate the net- 

Fig. 2. A stacked neural network. 

work generalisation capability and result in significant pre- 
diction errors when the network is applied to unseen data. 

2.2. Stacked neural networks 

In recognition of the difficulties in building a perfect neural 
network model. several researchers have recently shown that 
a robust neural network model with improved generalisation 
capability can be obtained by combining several nonperfect 
neural network models (e.g., Refs. [20-22*25,26] ). The 
combination of multiple neural networks results in a stacked 
neural network. 

A diagram for a stacked neural network is shown in Fig. 2, 
where several neural network modets are developed to model 
the same relationship and are combined together. The indi- 
vidual neural networks are trained using different training 
data sets and/or from different initial weights. Instead of 
selecting a single neural network model, a stacked neural 
network model combines several neural networks to improve 
model accuracy and robustness. The overall output of the 
stacked neural network is a weighted combination of the 
individual neural network outputs. This can be represented 
by the following equation. 

,=I 

where f( X) is the stacked neural network predictor,f:( X) is 
the ith neural network predictor, u’, is the stacking weight for 
combining the ith neural network, II is the number of neural 
networks, and X is a vector of neural network inputs. 

Stacking weights can be determined in a number of ways. 
A simple approach is to take equal weights for the individual 
networks and the stacking weights are all at 1 in. Another 
approach to obtain the stacking weights is through multiple 
linear regression. However, this approach has problems due 
to the severe correlation among the individual predictors. 
Since each network is developed to model the same relation- 
ship, these networks are usually highly correlated. We found 
that obtaining stacking weights through multiple linear 
regression does not give good performance. This was also 
experienced by Breiman [27] and he suggests to put a con- 
straint on the stacking weights such that they are nonnegative. 
Since the individual neural networks are highly correlated. 
appropriate stacking weights could be obtained through prin- 
cipal component regression (PCR) [ 221. 
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Let y be a vector of the expected model outputs and 9, be 
a vector of the predictions from the I’th neural network pre- 
dictor. Predictions from a set of n predictors can be put in a 
matrix as follows. 

~~[jQ2...j-] (7) 

where each column corresponds to an individual predictor. 
The vector of predictions from the stacked neural network 
model, jstack, can be represented as 

The matrix ? can be decomposed into the sum of a series 
of rank one matrices through principal component 
decomposition. 

+=t,py+rg;+...+t&?; (9) 

In the above equation, t, andp, are the ith score vector and 
loading vector, respectively. The score vectors are orthogo- 
nal, likewise the loading vectors. in addition they are of unit 
length. The loading vector p, defires the direction of the 
greatest variability and the score vector t,. also known as the 
first principal component. represent:; the projection of each 
column of %’ onto p,. Thus, the first principal component is 
that linear combination of the colunns in 9 explaining the 
greatest amount of variability (t, = ~JJ,) The second prin- 
cipal component is that linear combination of the columns in 
? explaining the next greatest amount of variability 
( t2 = 9~~) subject to the condition that it is orthogonal to the 
first principal component. Principal components are arranged 
in decreasing order of variability explained. Since the col- 
umns in 9 are highly correlated, the first few principal com- 
ponents can explain the majority of variability in %‘. 

Through PCR, the stacked neural network model output is 
obtained as a linear combination of the first few principal 
components of 3. Suppose that the first k principal compo- 
nents are used in PCR and they are denoted by T, and 
T,= ?P,, where Pk= [p, p2...pk], then the stacked neural 
network model can be represented as 

j,,& = Tke = *Pke (10) 

The least squares estimation of 0 is: 

ij = ( T;TJ - ‘T;y = (P;i’=+P,) - ‘P;%‘Ty (11) 

The stacking weight vector w c&mated through PCR is 
then 

w = P,i= Pa( Pp%P,) - IP$Ty (12) 

We have found that the weights d’:termined from PCRgive 
very good performance. The number of principal components 
used can be found through cross validation. Different num- 
bers of principal components are studied and the resulting 
model errors on testing data are compared. The number of 
principal components used is then determined based on the 
model errors on the testing data. 

The method for building a stacked neural network model 
is summarised as follows. Firstly, data for building neural 
network models are re-sampled to form different training data 
sets. Bootstrap re-sampling [28] with replacement can be 
used. The idea of bootstrap is to suppose that a cumulative 
distribution function (CDF) @,, calculated from an observed 
sample X,. ., X, is sufficiently like the unknown CDF F so 
that one can use a calculation performed using pn as an esti- 
mate of the calculation that we would like to perform using 
F. Distribution of the training dataobtained through bootstrap 
re-sampling is similar to the original data distribution. Sec- 
ondly, a neural network model is developed for each set of 
training data. Finally, the individual networks are combined 
together through PCR. 

A problem in industrial applications of neural network 
models is the current lack of model prediction confidence 
bounds. The bootstrap re-sampling techniques can be used to 
estimate the standard errors of model predictions [ 28,293. 
Based on the estimated standard errors, confidence bounds 
for neural network model predictions can be calculated. Neu- 
ral network prediction confidence bounds give the process 
operator extra information about the predictions. The process 
operator can accept or reject a particular prediction from a 
neural network model by using the associated prediction con- 
fidence bounds. 

Tibshirani 1291 compared several error estimates for neu- 
ral network models. These error estimate methods including 
the delta method [28], the sandwich method [30], and the 
bootstrapping method. It is shown that the bootstrapping 
method gives better estimate than other methods. The boot- 
strapping method for calculating neural network prediction 
confidence bounds is summarised as follows. 

Step 1. Generate B samples, each one of size n drawn with 
replacement from the n training observations ((x,, y,), (x-,, 
yr), . . . . (x,, ?;,) }. Denote the bth sample by { (.a’;, $‘), (4. 
y;,, . . . . (4, $3 I. 

Step 2. For each bootstrap sample b= 1, 2, . . . . B, train a 
neural network model. Denote the resulting neural network 
weights by W”. 

Step 3. Estimate the standard error of the ith predicted value 

by 

{ 
-&i [y(x;; Wh) -y(,q; . q 

h= I 

where y(x-,: . ) = Cf= ,y(x;; p) lB. 
Step 4. Calculate the 95% confidence bounds by taking 

plus and minus 1.96 times the standard error of the mean of 
the predicted values. 

3. Prediction of polymerisation trajectory 

The dynamic model for a batch polymerisation reactor can 
be represented in the form of a nonlinear state space model 
as follows. 



~/dr=~(~(~~.~(~~) (f3f 

y(t) =g(Htf) ( 14) 

where x is a vector of state variables, y is a vector of polymer 
quality variables, and II is a vector of controls which are 
specified by the batch recipe. Eqs. ( 13) and ( 14) can be 
derived based on polymerisation kinetics, material balance, 
and energy balance. Due to the complexity in polymerisation 
kinetics, Eqs. ( 13) and ( 14) are generally very complicated 
and involves a large number of reaction constants which 
depend on some process variables such as the reactor tem- 
perature. Hence it is very effort demanding to develop such 
a complex first principles model. The calculation of polymer 
quality variables based on Eqs. ( 13) and ( 14) involves the 
numerical integration of a large number of differential equa- 
tions. Furthermore, long term prediction of polymer quality 
variables will involve numerical integration over a long time 
period since many intermediate state variable 5 are not meas- 
ured. Errors due to the inaccuracy of certain model parameters 
can accumulate to a significant level when taking numerical 
integration over a long time interval. To overcome these 
problems, a stacked neural network is used tc build a model 
which links the batch recipe, U, with a trajectory of polymer 
quality va~ables,y(~)~ f= 1. 2, . . . . n. 

Let Y= iy&.. ,v,f be IZ points from the trajectory of a 
polymer quality variable, for example, the number average 
molecular weight. When there are no disturbances, Y is 
mainly determined by the batch recipe, U. Given the experi- 
mental data to a number of batches, it is possible to learn the 
relationships between U and Y using a neural network. The 
neural network model for predicting Y from U has the follow- 
ing form: 

Y=pf w (15) 

where p( ) is a nonlinear function represented by a stacked 
neural network. Once a network has been trained to model 
the relationships between U and Y, it can be used to predict 
Y from U. 

4. disturbance ~timation 

The economic operation of a polyme~sati.~n process USU- 

ally requires ~atnnreacted species be recovered and recycled 
back into the process 1311. Associated with the recycle of 
solvent and unreacted monomers is also the recycle of reae- 
tive impurities which are introduced into the system in the 
fresh feed or as a by-product of chemical reacuons. The levels 
of reactive impurities can be built up to the point where the 
reacting system is severely affected. Almost 1-J types of poly- 
merisation are sensitive to reactive impurities. In polymeris- 
ation processes, reactive impurities are Usually traces of 
inhibitors or oxygen. The studies in Ref. [32] show that 
impurities in an emuIsion system consume rapidly reactive 
free radicals, thus, preventing particle ~ener~~tion and reduc- 
ing the growth of any polymer particles already present. Since 

reactive impurities can rapidly consume free radicals. their 
effect can generally be represented by a step decrease in 
initiator concentration or initiator efficiency [ 331. The gross 
initial initiator weight can be expressed as the sum of the 
effective initiator weight and the amount of impurities a’; 
follows: 

4, g = 43 + A 41 (16) 

where I”, is the gross initial initiator weight, & is the effective 
initial initiator weight, and hX, is the amount of impurities. 

When there exist reactive impurities, the effective batch 
initial condition will be different from the nominal initial 
condition defined by the batch recipe. Predictions of polymer 
qualities based on the nominal initial condition could posses 
significant errors when there exist reactive impurities. Accu- 
rate predictions of polymer qualities can only be obtained 
when the an~ount of reactive impurities can be estimated. A 
neural network based technique for the estimation of reactive 
impurities has been developed by Zhang et al. [23]. The 
techniques can accurately estimate the amount of reactive 
impurities during the early stage of polymerisation. 

In this method, a neural network based inverse model 
which maps a trajectory of monomer conversions to the cor- 
responding initial initiator concentration is deveioped. The 
neural network model takes the following form. 

fo=f(T,X(t,)*X(td, -*.,X(t,)) (17) 

where &, is the initial initiator weight, T is the reactor tem- 
perature, X( t,) to X( t,,) are n discrete points in the monomer 
conversion trajectory during the early stage of a batch. Given 
a set of conversion measurements, the neural network model 
can be used to estimate the effective initial initiator weight. 
In this case, the amount of impurities is estimated as the 
difference between the gross initial initiator weight and the 
estimated effective initial initiator weight. 

5. Application to a batch MMA polymerisation reactor 

5.1. The hatch polymeriscrtion reactw 

The batch polymerisation reactor studied in this paper is a 
pilot scale polymerisation reactor developed in the Depart- 
ment of Chemical Engineering, Aristotle Unjversity of Thes- 
saloniki, Greece. The batch polymerisation reactor is shown 
in Fig. 3. The free-radical solution polyme~sat~on of meth- 
ylmethacrytate (MNA) is considered in this paper. The sol- 
vent used is water and the initiator used is benzoyl peroxide. 
The jacketed reactor is provided with a stirrer for thorough 
mixing of the reactants. Heating and cooling of the reaction 
mixture is achieved by circulating water at appropriate tem- 
perature through the reactor jacket. The reactor temperature 
is controiled by a cascade control system consisting of a 
primary PID and two secondary PID controllers. The reactor 
temperature is fed back to the primary con~oller whose out- 
put is taken as the setpoint of the two secondary controllers. 
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Fig. 3. A batch polymerisatian reactor. 

The manipulated variables for the two secondary controllers 
are hot and cold water flow rates. The hot and cold water 
streams are mixed before entering the reactor jacket and pro- 
vide heating or cooling for the realztor. The jacket outlet 
temperature is fed back to the two secondary controllers. A 
simulation programme is developed and is used to test the 
techniques developed in this paper. 

5.2. Prediction of batch polynzerisat.fon trajectorim 

In this reactor, batch recipes mainly include the reactor 
temperature setpoint and the initial initiator concentration. 
Neural network models are developed to predict traje~to~es 
of monomer conversions (X), number average molecular 
weights ( Mn), and weight average molecular weights (Mw) 
from initial batch recipes. In this reactor, the nominal batch 
time is from 2 to 3 h. Polymer quality variables at 60, 80, 
100, 120, 140, 160, and 180 min from the start of a batch are 
predicted from neural network models. A stacked neural net- 
work is developed for each of these time instant and it has 
two inputs and three outputs. The two network inputs are 
reactor temperature setpoint and the initial initiator concen- 
tration while the three network outputs are Mn, Mw, and X. 

To generate training and testing data, 30 batches were 
simulated with batch recipes generated through Monte-Carlo 
simulation. For each batch, polymer quality variables at the 
seven discrete time instants were collected. To make the sim- 
ulation close to reality, measurement noises are added to the 
polymer quality variables and they are in the ranges [ - 3000 
gimol, 3000 g/mot], [ -6000 glmol, 6000 g/mol], and 
[ - l%, l%] for Mn Mw, and X, respectively. Bootstrap re- 
sampling with replacement [28] were used to generate 50 
replica of the data set. For each m-sampled data set, 80% of 
the data points were randomly selected as training data while 
the remaining serve as testing data. A single hidden layer feed 
forward neural network was developed for each of the re- 
sampled data set. Each network contains 1.5 hidden neurons 
and the network weights were initial,sed as random numbers 
in the range ( - 0.1, 0. I ) . Networks were trained using the 
Levenberg-Marquardt optimisation [ 341 algorithm with 
regula~sation. Training is terminates. using a cross validation 
based ‘early stopping’ rule. During network training, the 
training algorithm continuously checks the network error on 
the testing data. Training is terminated at the point where the 
network error on the testing data is at its minimum. Early 

stopping is an implicit way to implement regularisation which 
can improve network robustness [ 351. 

The 50 individual networks were combined together 
through PCR. A further 20 batches were generated as unseen 
validation data to test the reliability of the developed neural 
network models. Figs. 4 and 5 show the predicted and sim- 
ulated polymer quality variables at 100 min and 160 min, 
respectively, on the 20 unseen validation batches. The 95% 
confidence bounds for the predictions are also shown. In 
Figs. 4 and 5, the simulated polymer quality variables are 
represented by ‘ol, the predicted values from the stacked 
neural networks are represented by ‘ + ‘, and the 95% confi- 
dence bounds are represented by the dash-dot lines. It can be 
seen that predictions are very accurate. The prediction con- 
fidence bounds give the process operator extra information 
on how confident the predictions are. Based on the confidence 
bounds, the process operator can accept or reject a particular 
prediction from a neural network model. Fig. 4 shows that 
the prediction confidence bounds are quite narrow for all the 
20 batches indicating that these predictions are reliable. Fig. 5 

o:simutation: +:NN predictions; -.:confidence bounds 
/ 

X .:~~;~ 

\ 
0; 
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Fig. 4. Predictions of polymer quality at 100 min 
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Fig. 5. Predictions of polymer quality at 160 min. 
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shows that the prediction confidence bounds for batches 12 
to 15 are quite wide indicating the lack o~corlfidence in these 
predictions. The process operator should therefore treat these 
predictions with care. 

For the purpose of comparison, single neural network mod- 
els were also developed to predict polymer quality variables. 
Seven single neural network models were developed to pre- 
dict polymer quality variables at the above mentioned time 
instants. Each of these networks has 15 hidden neurons and 
network weights were initialised as random numbers in the 
range ( - 0.1, 0.1) . These networks were trained using the 
Levenberg-Marquardt optimisation algo~t~irn with regular- 
isation. Data from the first 30 batches were ~)a~itioned into a 
training data set and a testing data set. Data from the first 20 
batches were used as training data while data from the remain- 
ing 10 batches were used as testing data. During network 
training, the training algorithm continuousl~~ checks the net- 
work error on the testing data. Training is te~inated at the 
point where the network error on the testing data is at its 
minimum. Figs. 6-8 compare the scaled sum of squared errors 

Fig. 6. Scaled SSE in predicting Mn on the validation data. 

“I . 
63 a0 TatI 

Tim. @nim”t*s1 

Fig. 7. Scaled SSE in predicting Mw on the validation data. 

Fig. 8. Scaled SSE in predicting X on the validation data. 

(SSE) of the stacked neural network models and the single 
neural network models on the 20 unseen ~,a~idation batches. 
It is clearly indicated that the stacked neural network models 
perform much better than the single neural network models. 

Consider a batch with the following nominal recipe: the 
reactor temperature setpoint is 35 1 K and the initial initiator 
weight is 2.5 g. Reactive impu~ties were added to this batch 
and their amount was arbitrarily taken as 0.83 g. Without 
knowing the existence of reactive impurities, predictions of 
polymer qualities based on the nominal batch recipe possess 
significant error as can be seen from Fig. 9. In Fig. 9, simu- 
lated process measurements are represented by ‘o’, neural 
network predictions based on the nominal batch recipe are 
represented by ‘ * ‘. 

To detect and estimate the amount of reactive impurities 
during the early stage of a batch, monomer conversion ‘meas- 
ur~mel?ts’ at 15,20,25, and 30 min from the batch start were 
collected. Using the technique presented in Section 4, the 
existence of reactive impurities was detected and their amount 
was estimated as 0.87 g, which is very close to the true amount 
of reactive impurities. Deducting this amount of reactive 
impurities from the nominal initial initiator weight. the effec- 
tive initial initiator weight is then estimated as 1.63 g. Neural 
network predictions of polymer qualities based on this effec- 
tive initial initiator weight are shown in Fig. 9 where they are 
represented as ‘ + ‘, It can be seen from Fig. 9 that the pre- 
dictions based on the effective initial initiator weight are very 
accurate. This demonstrates that the neural network based 
polymer quaiity prediction technique, when combined with 
the impurity estimation technique, can accurately predict tra- 
jectories of polymer quality variables even in the presence of 
an arbitrary amount of reactive impurities. 

x IO" o:simulatmn; ‘:NNl; +:NN2 
21 I 

0.6 L I 
50 loo 150 200 

lime (min.) 

Fig. 9. Predicted polymerisation trajectories. 



6. Optimum recipe design 

The proposed technique can be used to design optimum 
batch recipes. The objective in operating batch polymerisa- 
tion processes is to produce polymer products with desired 
quality and high monomer conversion at a minimum time. 
This can be expressed as the following; objective function: 

Mw,- 1)‘+w3(X(t,) - l)‘+w,t, (18) 

where tt is the batch ending time, Mn, a:ld Mw, are the desired 
number average molecular weight and *Neight average molec- 
ular weight, respectively, X is the monomer conversion, and 
)v, to wq are positive weighting factors. Let ll denotes the 
batch recipe, then the optimum batch recipe and batch ending 
time can be found by solving the following optimisation 
problem: 

In this study, the weights ~.‘r to tv3 .are all selected as one 
and the weight w, is selected as 0.001 h-‘. Since the devel- 
oped neural network models predict polymer qualities at 60, 
80, 100, 120, 140, 160, and 180 min from the batch start, 
these time instance are considered as the possible batch end- 
ing time. Optimisation is then performed for each of these 
possible batch ending time. The optimal batch recipe and 
batch ending time are selected as these which minimise the 
objective function. 

Consider the following example where Mn, and Mwd are 
2.8 x lO”g/mol and 8 X IO5 g/mol, respectively,correspond- 
ing to a particular grade of polymer product. Optimisation 
results for the seven possible batch end !ng times are presented 
in Table 1. Among these, the batch ending time of 120 min 
and its corresponding recipe give the smallest objective func- 
tion value. The optimal recipe was used in simulation and the 
resulting trajectories of polymer quality variables are pre- 
sented in Fig. 10. It can be seen from Fig. 10 that the final 
product has the desired quality. Tabla 1 also indicates that 
for the production of this particular grade of product, faster 
reactions can be achieved through higher temperature and 
lower initiator concentration. 

The proposed technique can also be used for the monitoring 
of batch polymerisation reactors. Given a batch recipe, tra- 

Table 1 

Optimum batch recipes 

f, {min) J T,,(K) 41 (Et) 

60 0.0394 350.29 l.OY 
80 0.0380 344.86 1.52 
100 0.0382 340.85 2.02 
120 O.&l378 3?7,77 2.5 
140 0.0489 3?7.07 2.5 
I60 0.07 19 3l6.45 2.5 

180 0.0804 316.03 2.5 

4 
20 40 

60 60 100 120 I 

0 20 40 60 60 100 120 
Tame (min.) 

Fig. 10. Polymerisation trajectories under the optimum batch recipe. 

jectories of polymer quality variables can be predicted. A 
batch ending time can be determined based on these predic- 
tions. When there exist reactive impurities, the nominal batch 
ending time will be inappropriate. Based on the estimated 
amount of reactive impu~ties, trajectories of polymer quality 
variables can be predicted. Process operators can then antic- 
ipate the final product qualities and determine a suitable batch 
ending time. 

7. Conclusions 

Robust neural networks are used to predict trajectories of 
polymer quality variables in batch polymerisation from batch 
recipes. The robust neural network is obtained by developing 
several neural networks from bootstrap re-sampled training 
data and combining them. By this means, neural network 
generalisation capability can be significantly improved. The 
technique only requires a small amount of process operation 
data which can be accumulated during previous operations. 
By using neural networks to learn the relationship between 
batch recipes and polymerisation trajectories, the develop- 
ment of complex polymerisation kinetic models is avoided. 
The problem of numerical integration of a large number of 
complex differential equations over a long time period is also 
avoided. 

The effect of disturbances, mainly in the form of reactive 
impurities, is considered in the proposed technique. Several 
conversion measurements are taken during the initial stage 
of a batch to estimate the amount of reactive impurities. A 
stacked neural network is used to estimate the amount of 
reactive impurities. From the estimated impurities, the effec- 
tive amount of initial initiator can be calculated. Application 
of the proposed technique to a simulated batch MMA poly- 
merisation reactor demonstrates that the technique can accu- 
rately predict trajectories of polymer quality variables even 
with the presence of reactive impurities. The technique has 
been used in designing optimum recipes for a batch poly- 
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merisation process. It can also be used for the prediction, 
control, and monitoring of batch polymerisation processes. 
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